X-ray Crystallographic and NMR Structural Studies of *trans*-2,3-Dichloro-5-ethyl-2,3-dihydrothieno[2 3-*b*]pyridine *syn*-1-Oxide Reactions of Thiophene Rings with Hypochlorite Reagents LeRoy H. Klemm*, Timothy J. R. Weakley, and Myungok Yoon

Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253, U. S. A. Received January 23, 1999

X-ray analysis of a crystalline product obtained by treatment of 5-ethylthieno[2,3-b]pyridine with excess acidified hypochlorite establishes its stereochemistry as trans-2,3-dichloro-5-ethyl-2,3-dihydrothieno-[2,3-b]pyridine syn-1-oxide (5), wherein the pyridine ring is planar and the dihydrothiophene ring is non-planar with a C2-S-C7a angle of 86.6°. The trans geometry is corroborated by a proton-proton coupling constant $J_{2,3}$ of 6.8 Hz. Comparison of 1 H and 13 C nmr data for 5 with analogous crystalline 2,3-dichloro-1-oxide addenda isolated in the isosteric benzo[b]thiophene and thieno[2,3-b]pyridine parent systems indicates that some proposed stereochemical assignments are questionable.

J. Heterocyclic Chem., 36, 1077 (1999).

The use of acidified aqueous hypochlorite solutions for S-oxidation and/or chlorination of thiophene compounds has been studied in a number of laboratories. Thus, thiophene itself is converted into cis-2,5-dichloro-2,5-dihydrothiophene 1-oxide (oxide stereochemistry undetermined) (1), plus chlorothiophenes by treatment with cold, concentrated hydrochloric acid and aqueous hypochlorite [1]. The acid is a necessary reagent since thiophene is inert toward sodium hypochlorite in basic solution [2]. Chemically, these results have been rationalized in terms of the equilibrium reaction for the reagent mixture.

$$HCl + HClO$$
 \leftarrow $Cl_2 + H_2O[3]$

When dilute hydrochloric acid solutions of benzo[b]thiophene or its isosteric thieno[2,3-b]-, thieno[2,3-c]-, and thieno[3,2-b]pyridines were treated with aqueous sodium hypochlorite in the molar ratio of 1:2:2 (substrate:acid: hypochlorite) at room temperature, however, only low yields (13-37%) of sulfones 2 and 3a-3c, respectively, were isolated [4,5]. Additionally, with thienopyridine 4a as substrate, replacement of the hydrochloric acid by sulfuric acid in a molar ratio of 1:1:2 also gave 3a (48% yield). Treatment of 5-ethylthieno[2,3-b]pyridine (4b) with excess acidified hypochlorite (molar ratio 1:2 sulfuric acid:4) in aqueous tetrahydrofuran at room temperature gave 2,3-dichloro-5ethyl-2,3-dihydrothieno[2,3-b]pyridine 1-oxide (18% yield), mp 170-171° [3]. We now report the stereochemistry of this 171° product as trans-syn (as shown in structural formula 5) by means of X-ray crystallography.

Meanwhile, Geneste and coworkers [6,7] reported the use of *t*-butyl hypochlorite in aqueous *tert*-butyl alcohol (95%) at 20° as an alternative to our procedure with benzo[*b*]thiophene as substrate. The added water was necessary in order to hydrolyze the *t*-butyl hypochlorite and produce hypochlorous acid *in situ*. The total mixed products were separated by chromatography, purified, and identified. In two particular

Figure 1

experiments using molar ratios of hypochlorite: benzothiophene of 1:1 and 2:1, respectively, combined product yields of 41% and 98% did not include observable sulfone 2 [7,8]. However, three isomeric 2,3-dichloro-2,3-dihydrobenzo[b]-thiophene 1-oxides, assigned stereochemistries of *trans-anti* 6, *trans-syn* 7, and *cis-anti* 8, were isolated and characterized by ¹H and ¹³C nmr spectra [9,10]. We, herewith, also compare nmr data for 5 and analogous products in the thieno-[2,3-b]pyridine series with those assigned to 6-8.

X-ray crystallographic data for 5 are presented in Tables 1-4 and an Ortep view of it is shown in Figure 2. As indicated from Tables 3 and 4 the pyridine ring is planar (sum

Table 1
Crystallographic Data and Structural Refinement for 5

- ,	
Empirical formula	C ₉ H ₉ Cl ₂ NOS
Formula weight	250.14
Crystal appearance	colorless block
Crystal dimensions	0.25 x 0.36 x 0.36 mm
Crystal system	monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	a = 10.028 (1) Å
	b = 9.730 (2) Å
	c = 12.018 (2) Å
	$\alpha = 90^{\circ}; \beta = 114.42 (1)^{\circ}$
Unit cell volume	1067.8 (6) Å ³
Z	4
Density (calculated)	1.556 g/cm ³
Linear absorption coefficient (µ)	7.62 cm ⁻¹
F(000)	512
Diffractometer	Enraf-Nonius CAD-4
Radiation wavelength (λ)	Mo Kα, 0.71073 Å
Monochromator	graphite
Temperature	22° C
Maximum 20	50°
Index ranges	$h, 0 \rightarrow 11; k, 0 \rightarrow 11; \ell, -13 \rightarrow 12$
Scan mode	ω/2θ
Scan speed (on ω)	1.2-5.5° min ⁻¹
Scan width	$(1.10 + 0.35 \tan \theta)^{\circ}$
Standard reflections	3 for every 3600 s exposure
Independent reflections scanned	2003 (128 systematically absent)
R_{int} (on F^2 for $0, k, \pm \ell$)	0.059
Reflections in refinement (N)	$1598 [I \ge 1.5\sigma(I)]$
Absorption correction	azimuthal scans
Relative correction factors	0.85-1.00
Secondary extinction parameter (g)	1.1 (2) x 10 ⁻⁶
Number of parameters (V)	164
Function minimized	$\Sigma w(F_0 - F_c)^2$
Weighting factor (w)	1/σ ² (F)
R(F), $wR(F)$	0.035, 0.042
S	2.24
Maximum Δ/σ , last cycle	0.014
Maximum, minimum in final	0.27 0.200 8.3
diffraction map	0.37, -0.20e Å- ³
Algebraic relationships [18]	

Table 2 Bond Lengths in 5, Å [a]

Atom	Atom	Distance	Atom	Atom	Distance	
S	0	1.489 (2)	C3a	C4	1.385 (3)	
S	C2	1.851 (3)	C4	C5	1.378 (4)	
C2	C/2	1.767 (3)	C5	C6	1.384 (4)	
C2	C3	1.507 (3)	N	C6	1.339 (4)	
C3	C l 1	1.793 (2)	N	C7a	1.327 (3)	
C3	C3a	1.500(3)	C5	C8	1.512 (4)	
C3a	C7a	1.372 (3)	C8	C9	1.483 (5)	
S	C7a	1.793 (3)				

[a] Standard deviations, shown in parentheses, refer to the least significant digits.

of internal angles = $720.0 \pm 1.3^{\circ}$; mean deviation from planarity = 0.002 Å) within experimental error, while the dihydrothiophene ring is non-planar (respective values $528.4 \pm 0.9^{\circ}$ and 0.141Å) and tilted from the plane of the

Table 3
Bond Angles in 5 [a,b]

Atom	Atom	Atom	Angle (°)	Atom	Atom	Atom	Angle (°)
0	S	C2	108.3 (1)	S	C7a	C3a	114.7 (2)
0	S	C7a	106.5 (1)	S	C7a	N	119.3 (2)
S	C2	C3	108.4 (2)	N	C7a	C3a	125.9 (2)
S	C2	C/2	109.5 (1)	C3a	C4	C5	118.4 (2)
C/2	C2	C3	113.3 (2)	C4	C5	C6	118.2 (3)
C2	C3	C3a	105.3 (2)	C4	C5	C8	121.6 (3)
C2	C3	Cl1	110.4 (2)	C6	C5	C8	120.2 (3)
Cl1	C3	C3a	112.3 (2)	N	C6	C5	125.0(2)
C3	C3a	C7a	113.4 (2)	C6	N	C7a	114.5 (2)
C3	C3a	C4	128.5 (2)	C2	S	C7a	86.6(1)
C4	C3a	C7a	118.0 (2)	C5	C8	C9	113.5 (3)

[a] Standard deviations, shown in parentheses, refer to the decimal part of the angle. [b] Sum of internal angles: $720.0 \pm 1.3^{\circ}$ in the pyridine ring; $528.4 \pm 0.9^{\circ}$ in the dihydrothiophene ring.

Table 4

Deviations (in Å) from the Least-squares Mean Plane in Each Ring [a]

For pyridine ring [b]

For dihydrothiophene ring [c]

Ring atom	Deviation [d]	Ring atom	Deviation [d]
C3a	0.003 (2)	S	-0.014 (1)
C4	-0.002 (3)	C2	0.316(3)
C5	-0.001 (3)	C3	-0.221 (3)
C6	0.004(3)	C3a	-0.008 (2)
N	-0.001 (2)	C7a	0.145 (2)
C7a	-0.002(2)		
Substituent Atom		Substituent Ator	n
S	-0.117	O	-1.460
C3	-0.028	C /2	-0.392
C8	-0.024	C / 1	0.637

[a] Dihedral angle between least-squares ring planes: 8.2°. [b] Mean deviation from planar ring: 0.002 Å. [c] Mean deviation from planar ring: 0.141 Å. [d] Standard deviations, shown in parentheses, refer to the least significant digits.

pyridine ring. The C2-S-C7a angle of 86.6° is smaller than the C-S-C angles of 97.4° reported for dimethyl sulfoxide and diphenyl sulfoxide, but the S-O bond length (1.489 Å, Table 2) in 5 is intermediate between those of 1.53 and 1.47 Å in these other sulfoxides [11,12]. The C2-Cl2 bond length is notably shorter (0.026 Å) than the C3-Cl1 bond length, despite the expectation that the *syn* oxygen atom might repel electronically the vicinal chlorine atom.

Geneste and coworkers used a combination of proton coupling constants between H-2 and H-3, ¹³C chemical shifts for C-2 and C-3, and other observations to assign the stereochemistry to compounds **6-8** [13]. Comparisons of pertinent ¹H nmr data are presented in Table 5 and ¹³C nmr data, in Table 6. As based on the coupling constant J_{2,3} for compounds **5-8** it seems appropriate to assign a value of 6-7 Hz to a *trans* configuration, as in **5-7**, and a value of *ca.* 4 Hz to a *cis* configuration as in **8**. Table 5 includes data on two isomeric 2,3-dichloro-2,3-dihydrothieno[2,3-b]pyridine

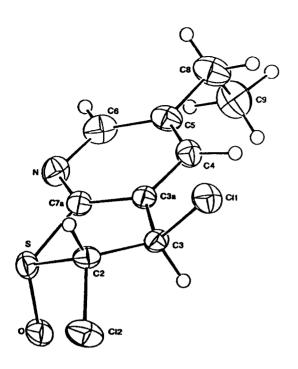


Figure 2. ORTEP Drawing of Compound 5.

1-oxides, IIa and IIb, previously reported [3]. The intermediate value of 5.5 Hz for $J_{2,3}$ of IIa, however, leaves the question of *cis* or *trans* geometry in this compound uncertain. On the other hand, the close numerical values between IIb and 5 for the chemical shifts of H-2 and H-3 plus the coupling constant $J_{2,3}$ in the solvent trideuterioacetonitrile imply that IIb may have the *trans-syn* stereochemistry also, rather than the *cis-anti* geometry previously proposed [3].

It should be noted that for each compound in Table 5 the signal for H-3 is listed as downfield of that for H-2. This assignment is based on the observation of Geneste et al [7] that reactions of 2- and 3-deuteriobenzo[b]thiophenes with t-butyl hypochlorite give retention of the D atoms and establish the relative chemical shifts of H-3 and H-2,

Table 5

Comparison of Chemical Shifts and Coupling Constants for ¹H NMR

Spectra in Compounds 5-8, IIa, and IIb

y, trans-syn ti [c] t [c] c] 166° [g] 5-150.5° [g]
i [c]

[a] Note that assignments of signals for H-2 and H-3 may be interchanged. [b] Shown as formula 5 in ref [7]. [c] Stereochemistry as proposed by Geneste et al (ref [7]). [d] Shown as formula 6 in ref [7]. [e] Shown as formula 7 in ref [7]. [f] Compound number as shown in ref [3]. [g] See text for a discussion of the stereochemistry of this compound. Also see footnote 13.

respectively. It is reasonably assumed that the D atoms do not migrate during the reaction. For comparison, Amann and Kresze [14] report a downfield shift of the signal for H-2 on going from the *syn* to the *anti* isomers of compound 9. Albeit very small, this change is in the same direction as that reported for going from 7 to 6. Unfortunately, Amann and Kresze did not report the effect on the H-3 signal for their change in isomers.

Table 6 compares ¹³C nmr chemical shifts in **5-8**. It is clear that one cannot assign stereochemistry on the basis of the measured signals, though **6** can be distinguished from the other three by the shifts for C-2 and C-3. It appears, however, that one can calculate reasonable chemical shifts for the carbons of the benzene ring in **6-8** from an assumption of additivity of substituent effects. It is also apparent that additional X-ray crystallographic studies on some of the compounds **6-8**, **IIa**, and **IIb** may be needed in order to establish definitive stereochemical structures in these series.

Table 6
Comparison of Calculated and Measured ¹³C NMR Chemical Shifts for Compounds **5-8**

Compound Number	i e e e e e e e e e e e e e e e e e e e					Chemical Shift (δ)					
		C-2	C-3	C-3a	C-4	C-5	C-6	C-7	C-7a	Comment	
5	CD ₃ CN	78.6	64.2	136.5	136.1	146.4	154.0		160.0	trans-syn [a]	
6	CDCl ₃	83.3	61.9	139.2	131.4	133.4	126.9	127.1	142.7	trans-anti [b]	
7	CDCl ₃	78.6	64.1	139.9	131.0	133.7	126.9	127.4	141.5	trans-syn [b]	
8	CDCl ₃	78.9	64.2	140.1	131.1	133.9	127.1	127.7	141.8	cis-anti [b]	
6-8 calcd	CDCl ₃			132.8	129.9	131.1	129.6	123.7	146.4	[c]	

[[]a] This study. [b] Stereochemistry as proposed by Geneste et al (ref [7]). [c] Stereochemically-independent calculated values from the table by D. E. Ewing Org. Magn. Reson., 12, 499 (1979), as based on the model compound of methyl 2-chloromethylphenyl sulfoxide and assuming additivity of effects of the substituents on the benzene ring. Substituent effects for the CH₂Cl group are taken as these: ipso, 9.3; ortho, 0.3; meta, 0.2; para, 0.0. Those for the SO group are taken as ipso, 17.6; ortho, -5.0; meta, 1.1; para, 2.4.

EXPERIMENTAL

trans-2,3-Dichloro-5-ethyl-2,3-dihydrothieno[2,3-b]pyridine *syn*-1-Oxide (5).

This compound was available in pure form from an earlier synthesis [3,15,16]; 1 H nmr (trideuterioacetonitrile): δ 1.28 (t, J_{Et} = 7.5 Hz, 3H, methyl group), 2.81 (q, 2H, methylene), 5.41 (d, $J_{2,3}$ = 6.8 Hz, 1H, H-2), 5.87 (d, 1H, H-3) [17], 7.91 (d, $J_{4,6}$ = 1.4 Hz, 1H, H-4), 8.63 (d, 1H, H-6); also see Table 5; 13 C nmr: see Table 6; X-ray analysis: see Tables 1-4 and Figure 2.

REFERENCES AND NOTES

- [1] A. Kergomard and S. Vincent, Bull. Soc. Chim. France, 2197 (1967); A. Kergomard and J. Thiolliere, French Patent 1,405,408; Chem. Abstr., 63, 14815 (1965).
- [2] S. F. Birch and W. S. G. P. Norris, J. Chem. Soc., 127, 1934 (1925).
- [3] L. H. Klemm, R. E. Merrill, and F. H. W. Lee, J. Heterocyclic Chem., 11, 535 (1974).
- [4] L. H. Klemm and R. E. Merrill, J. Heterocyclic Chem., 9, 293 (1972).
- [5] It should be noted that a high yield of sulfone 2 results from treatment of benzo[b]thiophene with hydrogen peroxide-acetic acid; see F. G. Bordwell, B. B. Lampert, and W. H. McKellin, J. Am. Chem. Soc., 71, 1702 (1949). However, treatment of thienopyridines with this reagent produces exclusively N-oxides rather than S-oxides;

- see L. H. Klemm, I. T. Barnish, and R. Zell, *J. Heterocyclic Chem.*, 7, 81 (1970); see L. H. Klemm, S. B. Mathur, R. Zell, and R. E. Merrill, *J. Heterocyclic Chem.*, 8, 931 (1971).
- [6] P. Geneste, J. Grimaud, J.-L. Olivé, and S. N. Ung, Tetrahedron Letters, 2345 (1975).
- [7] P. Geneste, J.-L. Olivé, and S. N. Ung, J. Heterocyclic Chem., 14, 449 (1977).
- [8] However, an experiment using 95% methanol, instead of 95% t-butanol, did produce a 15% yield of 2.
- [9] P. Geneste, J.-L. Olivé, and S. N. Ung, *J. Heterocyclic Chem.*, 14, 953 (1977).
- [10] P. Geneste, J.-L. Olivé, S. N. Ung, M. E. A. El Faghi, J. W. Easton, H. Beierbeck, and J. K. Saunders, *J. Org. Chem.*, 44, 2887 (1979).
 - [11] S. C. Abrahams, Acta Crystallogn, 10, 417 (1957).
- [12] R. Thomas, C. B. Shoemaker, and K. Eriks, Acta Crystallogr., 21, 12 (1966).
- [13] Note that Geneste *et al* isolated only three of the four possible stereoisomers in their studies. The *cis-syn* isomer was not reported.
- [14] W. Amann and G. Kresze, Tetrahedron Letters, 4909 (1968).
 - [15] Compound 5 was designated as XIX in ref [3].
- [16] The nmr spectra were obtained on a Varian INOVA 300 instrument.
- [17] Note that assignments of signals to H-2 and H-3 may be interchanged.
- [18] These are the same as given in L. H. Klemm, T. J. R. Weakley, R. D. Gilbertson, and Y.-H. Song, J. Heterocyclic Chem., 35, 1269 (1998).